CHM 102 Exam III

1. In aqueous solution, dithionite reacts with bismuth (III) to produce sulfite and bismuth metal:

$$S_2O_4^{2-}(aq) + Bi^{3+}(aq) \rightarrow SO_3^{2-}(aq) + Bi(s)$$

a) Assign oxidation states to all atoms in this reaction.

- b) Which reagent reacts as an oxidizing agent? Which reagent reacts as a reducing agent?
- c) Using the method of half-reactions, balance this chemical equation.

d) What volume of 0.10 <u>M</u> $S_2O_4^{2-}(aq)$ is required to make 50.0 g of Bi(s)?

2. Nobelium-259 was first discovered in 1965, and is most conveniently synthesized by the nuclear fusion of neon-22 nuclei with uranium-238.

a) Write a balanced nuclear equation for the formation of 259 No. What other particle is produced?

b) Nobelium-259 decays to fermium-255 with a half-life of 58 minutes. Write a balanced nuclear equation for this process. What form of radioactive decay is this?

c) How long does it take for a 99% of a sample of 1.0×10^{-6} g of ²⁵⁹No to decay?

3. One of the steps in the industrial synthesis of nitric acid is the reaction of ammonia with oxygen to form nitric oxide and water:

$$NH_3(g) + O_2(g) \rightarrow NO(g) + H_2O(g)$$

a) Assign oxidation states to all atoms in this reaction.

b) Which atom is getting oxidized? Which atom is getting reduced?

c) Using the method of half-reactions, balance this chemical equation.

d) A standard DOT 105J series rail car full of ammonia contains 33,500 gallons $(1.27 \times 10^5 \text{ L})$. How many moles of oxygen are required to completely react with this quantity of ammonia? The density of liquid ammonia is 0.6818 g / mL. 4. Explain the following phenomena:

a) Permanganate (MnO_4^-) is a common strong oxidizing agent, but manganese in permanganate is never oxidized.

b) A source of gamma radiation is more dangerous than a source of alpha radiation, despite the fact that an alpha particle can cause more molecular damage than a gamma ray.

c) The molar mass of a natural sample of bromine is about 80 g / mol, but bromine has no naturally occurring isotope of mass number 80.

5. For this problem, refer to the activity series at the right:

- a) Are the following reactions spontaneous? i) $Sn + Cu^{2+} \rightarrow Sn^{2+} + Cu$
- ii) $Li^+ + Ag \rightarrow Li + Ag^+$

iii) $Ni^{2+} + Fe \rightarrow Ni + Fe^{2+}$

b) Suppose you were choosing materials for a chemical plant. Would you pick copper or steel pipe for a process that runs under acidic conditions? Explain.

The Activity Series $Li(s) \rightarrow Li^{+}(aq) + e^{-}$ $K(s) \rightarrow K^{+}(aq) + e^{-}$ $Ca(s) \rightarrow Ca^{2+}(aq) + 2e^{-}$ $Na(s) \rightarrow Na^{+}(aq) + e^{-}$ $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$ $Al(s) \rightarrow Al^{3+}(aq) + 3e^{-1}$ $Mn(s) \rightarrow Mn^{2+}(aq) + 2e^{-1}$ $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-1}$ $Cr(s) \rightarrow Cr^{3+}(aq) + 3e^{-1}$ $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-1}$ $Ni(s) \rightarrow Ni^{2+}(aq) + 2e^{-1}$ $\operatorname{Sn}(s) \to \operatorname{Sn}^{2+}(aq) + 2 e^{-1}$ $Pb(s) \rightarrow Pb^{2+}(aq) + 2e^{-1}$ $H_2(g) \rightarrow 2 H^+(aq) + 2 e^ Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-1}$ $Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$ $Au(s) \rightarrow Au^{3+}(aq) + 3e^{-1}$

c) Write a balanced chemical equation for the dissolution of zinc in acid.

d) How many moles of HCl are required to dissolve 100.0 g of Zn?

For the remaining questions, choose the letter that corresponds to the best answer.

6. Which of the following are oxidation-reduction reactions?

- I. $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$
- **II**. $\operatorname{Cu}(s) + 2 \operatorname{AgNO}_3(aq) \rightarrow \operatorname{Cu}(\operatorname{NO}_3)_2(aq) + 2 \operatorname{Ag}(s)$
- III. $CO_2(g) + 2 \operatorname{LiOH}(s) \rightarrow \operatorname{Li}_2 CO_3(s) + H_2O(l)$
- IV. 2 HCl(aq) + 2 Na₂CrO₄(aq) \rightarrow Na₂Cr₂O₇(aq) + 2 NaCl(aq) + H₂O(l)
- V. $\operatorname{CH}_4(g) + 2\operatorname{O}_2(g) \rightarrow \operatorname{CO}_2(g) + 2\operatorname{H}_2\operatorname{O}(g)$
 - (A) I and II
 - (B) III and IV
 - (C) $\mathbf{I}, \mathbf{II}, \text{ and } \mathbf{V}$
 - (D) I, III, and IV
 - (E) I, IV, and V

7. How many neutrons, protons, and electrons are in an atom of platinum-195?

- (A) 78 neutrons, 78 protons, 195 electrons
- (B) 78 neutrons, 78 protons, 117 electrons
- (C) 117 neutrons, 78 protons, 195 electrons
- (D) 117 neutrons, 78 protons, 78 electrons
- (E) 195 neutrons, 78 protons, 78 electrons

8. Astatine-217 is unstable and undergoes the following series of decays: α , β , α , β . What nucleus is formed at the end of this decay series?

(A)	$^{209}_{79}\mathrm{Au}$
(B)	$^{207}_{81}$ Tl
(C)	$^{209}_{81}$ Tl
(D)	$^{207}_{82}{\rm Pb}$
(E)	$^{209}_{83}{ m Bi}$

9. Tritium has a half-life of 12.3 years. How long does it take for a 48 g sample of tritium to decay to 6.0 g?

- (A) 12 years
- (B) 21 years
- (C) 25 years
- (D) 37 years
- (E) 49 years

10. The following observations are made in the laboratory:

$Cd(s) + Ni^{2+}(aq) \rightarrow Cd^{2+}(aq) + Ni(s)$	spontaneous
$\operatorname{Cd}(s) + \operatorname{Fe}^{2+}(aq) \to \operatorname{Cd}^{2+}(aq) + \operatorname{Fe}(s)$	not spontaneous
$\operatorname{Fe}(s) + \operatorname{Ni}^{2+}(aq) \to \operatorname{Fe}^{2+}(aq) + \operatorname{Ni}(s)$	spontaneous

Which of the following is true about the relative reactivities of cadmium, nickel, and iron metal?

 $\begin{array}{ll} (A) & Cd(s) > Ni(s) > Fe(s) \\ (B) & Ni(s) > Fe(s) > Cd(s) \\ (C) & Ni(s) > Cd(s) > Fe(s) \\ (D) & Fe(s) > Cd(s) > Ni(s) \\ (E) & Fe(s) > Ni(s) > Cd(s) \end{array}$

11. Strontium-90 is an unstable nuclide produced in nuclear fallout that is dangerous because it can replace calcium in the bones. It is consumed by the following process:

$${}^{90}_{38}{
m Sr} \rightarrow {}^{0}_{-1}{
m e} + {}^{90}_{-39}{
m Y}$$

What is this process an example of?

- (A) fission
- (B) positron emission
- (C) α decay
- (D) β decay
- (E) γ decay
- 12. Which of the following statements are *false* about oxidation-reduction reactions?
- I. Oxidation is a loss of electrons.
- **II**. An oxidizing agent loses electrons.
- **III**. The oxidation state of an oxidizing agent will increase.
- **IV**. A reducing agent gets reduced.
- V. An atom undergoing reduction will have a decrease in oxidation state.
 - (A) I and V
 - (B) II and IV
 - (C) I, III, and V
 - (D) II, III, and IV
 - (E) I, IV, and V

13. The nuclide $^{232}_{90}$ Th is radioactive. When one of these atoms decays, a series of α and β emissions occur, taking the atom through many transformation to end up as an atom of $^{208}_{82}$ Pb. How many α particles are emitted in converting $^{232}_{90}$ Th to $^{208}_{82}$ Pb?

(A) 6
(B) 8
(C) 2
(D) 214
(E) 4

14. In the following reaction, what is oxidized and what is reduced?

 $3 \operatorname{CoSO}_4(aq) + 5 \operatorname{KI}(aq) + \operatorname{KIO}_3(aq) + 3 \operatorname{H}_2\operatorname{O}(l) \rightarrow 3 \operatorname{Co}(\operatorname{OH})_2(s) + 3 \operatorname{K}_2\operatorname{SO}_4(aq) + 3 \operatorname{I}_2(aq)$

- (A) Co^{2+} is oxidized and the I in IO_3^- is reduced.
- (B) I^{-} is oxidized and the I in IO_{3}^{-} is reduced.
- (C) I in IO_3^- is oxidized and H_2O is reduced.
- (D) I^- is oxidized and Co^{2+} is reduced.
- (E) None of these are correct.

15. An artifact contains 12.5% of the amount of ¹⁴C present in living things. The half-life of ¹⁴C is 5,730 years. How old is the artifact?

(A)	1,910 years
-----	-------------

- (B) 2,865 years
- (C) 11,460 years
- (D) 17,190 years
- (E) 22,920 years

Equations for radioactive decay

$$\mathbf{N} = \mathbf{N}_0 \mathbf{e}^{-(\ln 2)\frac{t}{t_{1/2}}}$$

$$\ln\left(\frac{N}{N_0}\right) = -(\ln 2)\frac{t}{t_{1/2}}$$